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ABSTRACT In this paper, a strip-shaped multi-hop ad hoc network is analyzed using a spatial Poisson point
process (PPP) and stochastic geometry. The decode-and-forwardprotocol is considered for transmission over
the multi-hop network where cooperative communications is employed at each hop. An analytical expression
for the probability density function of the received power at an arbitrary node is derived, given a set of nodes
transmits in the previous hop, which is further used to characterize the coverage performance of the network.
The received power at a node becomes a doubly stochastic process owing to random path loss and a Rayleigh
fading channel. The notions of one-hop success probability and coverage range are analyzed for various
network parameters. An algorithm for conserving energy is also proposed by considering PPP thinning and
its performance in terms of the fraction of energy saved is quantified. It is shown that the proposed algorithm

is more energy efficient as compared with an independent thinning algorithm.

INDEX TERMS Cooperative systems, fading channel, Poisson process, energy conservation.

I. INTRODUCTION
Future wireless networks pose critical challenges in terms of
reliability and seamless coverage. Whereas future networks
will be an amalgamation of sophisticated techniques under
the umbrella of fifth generation (5G), an integral part of
5G communications will largely be composed of Internet of
Things (IoT). Sensor and ad hoc networks constitute a major
portion of IoT and communications between various entities
of these networks plays a vital role for their successful oper-
ation. Cooperative transmission (CT) is one of the relaying
techniques for wireless sensor and ad hoc networks used
primarily to enhance the reliability of the received signals.
The nodes cooperate to form a virtual antenna array and
transmit the same signal towards the nodes of the next level or
hop, thereby providing spatial diversity gain [1]. A CT multi-
hop mechanism provides an efficient method for reaching a
distant destination as the transmit powers of the nodes can be
reduced without compromising the reliability [2].
Opportunistic Large Array (OLA) is a form of physical
layer CT [3], where multiple nodes in a hop transmit the same

message, without any coordination among each other and
without any addressing scheme. A promising characteristic
of this technique is that it does not require any prior infor-
mation of the number of cooperating nodes or their locations,
which makes it scalable and suitable for transmission without
any cluster head. In an OLA transmission, a source node
broadcasts its message and all nodes in the vicinity that
can decode this message, become part of level 1, which are
known as decode-and-forward (DF) nodes. In the next time
slot, these DF nodes transmit the same message concurrently
in the forward direction using cooperation and the process
continues until the data is reached at the destination or broad-
casted to the entire network. However, the modeling of signal
transmission over this multi-hop network is not very straight
forward and the foremost model was proposed in [4].

The proposed model for a strip-shaped OLA network
in [4] assumes infinite number of nodes transmitting con-
stant power per unit area, which guaranteed infinite signal
propagation over the network. This assumption of continuum
of nodes confined its application to networks with very high
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node density. However, it was shown in [5] that a finite
node density cannot lead to an infinite broadcast and that
the path loss exponent plays a major role in controlling the
broadcast region. Hassan and Ingram [6] studied the OLA
line network with finite node density and modeled the node
locations with Bernoulli point process. This model is then
extended in [7] to a strip-shaped network with deterministic
hop boundaries. Specifically, the authors model an ad hoc
network where the number of nodes in each hop is known
a priori. Moreover, fixed hop boundaries were assumed and a
Markov chain model was derived to study the characteristics
of multi-hop transmissions over the network. We extend the
model in [8] with random number of nodes per hop and fixed
hop boundaries.

In this paper, we study the coverage of a more general
setup, where the number of nodes per hop as well as hop
boundaries are kept random. The transmission model resem-
bles a typical OLA, where the transmission of the signal from
a source to a distant destination forms irregular levels or hops
with random number of nodes in each hop. We derive the
coverage probability of this network using the distribution
of the received power at a node, which is subject to channel
impairments that include independent Rayleigh fading and
path loss.

Our stochastic model is based on the theory of Poisson
point process (PPP) [9], where the nodes in each hop are
independent and distributed according to a Poisson random
variable (RV). The analytical tractability of the PPP model
makes it a suitable candidate to analyze the random number
of nodes in each hop; unlike fixed number of nodes, which
can be generally modeled using Markov chains [10]. Once
modeled, the void probability of PPP is used to compute
various network performance metrics such as m-hop success
probability, coverage range (CR) and required node density
to achieve a particular CR under a quality of service (QoS)
constraint.

The proposed stochastic model helps in determining the
CR of a pure OLA network given the node density of the
network for various hop distances. It provides useful insights
in designing a network in terms of one-hop success prob-
ability, m-hop success probability and fraction of energy
saved (FES). Its applications include, but not limited to, smart
grid communication system or fault recognition system for
transmission lines, and structural health monitoring system
for the overhead bridges and tunnels [11]. The model and
its findings can also be used to set up an inter-vehicular
communication system on the motorways [12] or a vehicular
ad hoc network (VANET) to monitor highway activity by
distributing the nodes along the highway.

The geometric complexity of the system increases with
random node locations and irregular hop boundaries, mak-
ing path loss a random process. The path loss is dependent
upon the Euclidean distance between the nodes, which when
combined with fading provides the notion of signal-to-noise
ratio (SNR) for a single link. In CT, multiple single-input
single-output (SISO) links are averaged over a PPP to analyze
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virtual multiple-input single-output (MISO) links. Our main
contributions in this paper are the followings.

o Derivation of the distribution of the Euclidean distance
between a pair of nodes distributed randomly in adjacent
overlapping levels without any hypothetical boundary in
between them.

o It is shown with the help of some statistical approaches
such as the moment matching method that the distribu-
tion of the distance raised to a positive power can be well
approximated by a Weibull distribution.

o We derive the distribution of the received power for a
virtual MISO link, which is the random sum over a PPP
of the ratio of an exponential random variable (RV) and
a Weibull RV.

o We derive the coverage range of a 2-dimensional (2D)
strip-shaped multiple hop OLA network.

« We devise a thinning of PPP to conserve energy for the
finite node density OLA networks with random node
placements by allowing only a subset of nodes to trans-
mit and quantify its performance.

An outline of the rest of the paper is as follows. Section II
describes the system model for the strip-shaped OLA network
under consideration. In Section III, the distance distribution
between a pair of nodes is derived. Section IV character-
izes the coverage behavior of the MISO links in terms of
the coverage probability and one-hop success probability.
Section V discusses the thinning algorithm and proves that
the distribution and intensity of the new process obtained after
thinning remains the same. Section VI validates our analytical
model and presents some useful results pertaining to system
performance metrics followed by the conclusion and future
directions in Section VII.
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FIGURE 1. A 2D strip-shaped network with finite node density.

O Nodes

Il. SYSTEM MODEL

In this section, we present the network architecture and
assumptions used for modeling the cooperative multi-hop
network. Consider a strip-shaped 2D network with a finite
node density where the node locations are random as shown
inFig. 1. A hop or level is formed opportunistically by a group
of decode-and-forward (DF) nodes that successfully decode
the signal, transmitted by a source node or a group of nodes in
the previous level. The DF nodes retransmit the same signal to
the nodes ahead in the next time slot. Initially, for the first time
slot, the source node transmits the signal, which is received
by a group of nodes in the proximity and a subset of nodes
decodes the message successfully depending upon transmit
power, decoding threshold and nodes density. The nodes that
successfully decode the signal become members of the first
level (or hop). The DF nodes at level 1 transmit the same
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FIGURE 2. Formation of levels along with membership probability.

signal in the next time slot cooperatively and level 2 is formed.
This process continues and subsequent levels are formed until
the destination is reached or the message is broadcasted to the
entire network. A node can successfully decode the signal,
transmitted by a group of nodes in the previous level, if
the accumulated received power is greater than the decoding
threshold. The received power at each node is a RV, dependent
upon channel impairments. It can be noticed that during the
entire transmission process, a hop is formed opportunistically
and that there are no fixed boundaries between the nodes of
two levels as shown in Fig. 2.

The problem at hand is to find the coverage range of
this network given the nodes transmit with a fixed power.
However, to solve this problem, we intend to find the success
probability of an arbitrary node in the network. This success
probability is then used to characterize the success of one
hop, and subsequently the probability of successful delivery
of message for arbitrary number of hops.

Let the total length of the network be divided into multiple
hops, such that the average hop distance is denoted by . Let
¢ denotes a homogeneous Poisson point process (PPP) on a
hop with intensity 7 such that the average number of nodes
inahopisy = 3:|S|, where |S| denotes the area of a single
hop. The probability of having k, nodes in one hop is thus
given by

(i8]

P$(S) = kn) = exp (—AISD

ey
Generally, each level or hop contains a random number of
nodes and the number of hops required to deliver a message to
a given distance is dependent upon network parameters. The
uniform distribution of the nodes makes the assumption of
homogeneous PPP suitable as it allows to model the random
number of nodes in a level as compared to a fixed number
of nodes per hop modeled generally with a binomial point
process [13].

The multiple copies of the same signal received by a node,
transmitted by a group of nodes in the previous level, are
assumed to be synchronous over independent fading chan-
nels [14] and are transmitted with equal transmit power.
A virtual multiple-input single-output (MISO) is formed as
shown in Fig. 3, which gives rise to spatial diversity and
hence more reliability. A hop is said to be successful, if there
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FIGURE 3. Transmission of signal from one hop to another without a
fixed hypothetical boundary. A single receiving node constitutes a MISO
scenario.

exists at least one DF node in the next hop provided the DF
nodes in the previous level relayed the signal. The intensity
of the DF nodes at level m is A = XPT, where P is the
success probability of a node [15]. The Sections IIT and IV of
this manuscript deal with the calculation of this probability.
Because of random node locations and random hop bound-
aries, a node in the network can be a part of different group
of DF nodes or levels, hence the membership of a node to
a particular level becomes random, which we discuss in the
following section.

A. MEMBERSHIP OF A NODE

It can be noticed that because of random channel charac-
teristics, a node can be part of many levels in different CT
sessions. The tendency of the nodes to be in the same hop
or level in subsequent iterations of the CT is higher if the
nodes are present around the center of a level and the tendency
decreases gradually for the nodes located near the boundary.
The path loss is the main factor in governing such behavior
of the nodes. The nodes present near the boundary of a hop
can become part of the adjacent hop due to the lower path
loss as compared to the path loss of the nodes present around
the center of the hop. The membership probability of a node
that it transmits in hop m is different for every other node
of the hop as shown in Fig. 2. For instance, a node located
near the boundary of hop, m — 1, can become a member of
the next hop, m, provided it has not transmitted the signal
before and successfully decoded the signal in next time slot.
The nodes located at point 51 have almost equal probability of
becoming a member of hop m— 1 or m. A node has a non-zero
probability of becoming a member of any level unless it has
not transmitted before. The Kolmogorov-Smirnov (K-S) [16]
test is used to check the similarity of the membership proba-
bility distribution to known distributions.

Monte-Carlo simulations are used to collect the data for
the membership probability and K-S test is applied to find a
similar distribution. For the simulation purpose, we consider
a strip-shaped network of length 300 and width 8 in which
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nodes are distributed uniformly. A source node is placed at
the start of the network and it broadcasts the signal. Every
other node that receives the signal and able to successfully
decode it, based on threshold, T = 0.04, will transmit the
signal in the next time slot. The DF nodes that transmit the
signal at next time slot form level 1. The nodes with received
power greater than T and which are not part of the previous
level (or levels), form next level. This process continues till
the signal is broadcasted to the entire network. We observe the
decoding pattern of the nodes in the subsequent levels formed
at a later stage of the process. This process is repeated N times
for two different intensities and independent data samples
{&1, &>, ..., &} of membership are collected with cumulative
density function (CDF) F(&). The hypothesized CDF with
which K-S test is performed is Fp(§) and subsequently the
null hypothesis which requires testing is given as

Hy : F| = Fo. ()

The empirical CDF is calculated from N independent and
identically distributed (I.I.D.) samples, given as

R 1 Y
RGES DL 3)
n=1

where I(.) is the indicator function, which is 1 if the condition
(&, < &) is satisfied and 0 otherwise. The maximum differ-
ence between the empirical CDF and hypothesized CDF is a
statistic used for goodness-of-fit known as K-S statistic, given
by [22]

Dy & sup |F1(8) — Fo(&)), 4

where sup is the supremum operator, which is the least upper
bound of a subset or a set. Usually, (4) is calculated as

Dy = max |F1(8) — Fo(&). 5)

for samples {£;}. Another input to the K-S test is the signif-
icance level, &, which is the probability of rejecting the null
hypothesis given that the two distributions are same, defined
as

& £ P(Dy > ¢|Hp), (6)

where ¢ is the critical value dependent upon the significance
level and sample size. The values of ¢ are given in tabular
form in [16]. The null hypothesis is accepted if ﬁf <, ie.,
F1 = Fy and rejected otherwise.

The K-S test is performed with N = 3000 and & = 0.05
for different known distributions and results are summarized
in the Table 1. The critical value, ¢, is found to be 0.0246.
It can be noticed that for the Gaussian distribution, bf <c
and Hj is accepted for both intensities. Hence the member-
ship probability distribution can be modeled with a Gaussian
distribution with some mean and variance based on the K-S
statistics. The length of the hop or level controls the variance
and mean is dependent upon the center of the hop. !

IThe distribution of membership functions of nodes in such OLA net-
works is also found to be Gaussian, e.g., [3] and [10].
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TABLE 1. K-S test for membership probability.

Distribution name Df i |F‘1 (&) — Fo (o)l
Intensity = 0.0833 Intensity = 0.2083

Central chi-squared 0.5540 0.5995

Gaussian 0.0129 0.0214

Rayleigh 0.2800 0.3800

Weibull 0.0285 0.0336

Gamma 0.0395 0.0225

B. RECEIVED POWER

Let ¢(S;,,) denotes the number of DF nodes at a level m, then
the received power at any node j at level m + 1 is given as

h..
Pym+1)=P Y d_g, )
icp(Sm) U

where P, represents the transmitted power, h;; denotes the
effects of Rayleigh flat fading modeled with the unit mean
exponential RV, d is the Euclidean distance between node i
and j of two different levels and « is the path loss exponent.
To calculate the CR of the network, m-hop success probability
needs to be calculated, which is dependent upon the one-
hop success probability and to calculate one-hop success
probability for a virtual MISO case, the sum of the ratio of
an exponential RV and the distance distribution is required.
The distribution of the Euclidean distance between the nodes
of the two adjacent levels is derived in the following section.

lll. DISTANCE DISTRIBUTION

In this section, we derive the distribution of the random
distance between a pair of nodes in adjacent levels. The
nodes in one level communicate with the nodes in the
next level, where nodes in each level are modeled by
two independent PPPs. A distance distribution between two
nodes, which are part of two distinct PPPs, needs to be
derived. In other words, a distance distribution between two
nodes of two PPPs is required, which is different com-
pared to the distance distribution between nodes of a single
PPP [17], [18]. As shown in Fig. 1, the network has a fixed
vertical length and extends in the horizontal dimension. The
nodes are distributed uniformly in the 2D network in both
directions but the formation of levels changes the node distri-
bution in horizontal direction with respect to a level or hop as
shown in 2.

It follows from the membership probability that at a level,
the nodes in the horizontal direction are concentrated around
the center of the level and stretches in the outward direction,
whereas vertical distribution of the nodes is not affected
and they follow uniform distribution. The candidate node
locations within one of the levels is modeled with random
variables (RV). The horizontal component is modeled with
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normal RV X given by

o) = —exp (T ®)
= v TP\ T e )

where v is the mean of the normal distribution representing
the center of a level and o is the standard deviation char-
acterizing the size of the level. On the other hand, uniform
distribution is used to model the vertical component, given
by

1

=15 if0=y=5 ©)

otherwise,

m

m+1

FIGURE 4. A realization of a pair of nodes placed randomly in adjacent
levels.

where B is the width of the strip-shaped network. These
two RVs completely describe the location of a node in one
level. Let A1(x1, y1) and A2(x2, y2) be the two randoms nodes
in adjacent levels at positions x;, y;;i € {l,2} as shown
in Fig. 4, then the Euclidean distance between two nodes is
given by

d =t =30+ (42— ). (10)

In(10),x; € X;andy; € Y; Vi = {1, 2}, where X; ~ N (v;, o)
and Y; ~ U|[O0, B]. If the means and variances of X and X, are
(v1, 0 and (12, 02) respectively, then the difference between
two normal RVs X, — X is also a normal RV O, whose PDF

is given as
1 (0 — w)?
Jolo) = expl ——5—1]- (11)
AN21 P 2N
where it = v, — vy with standard deviation A = +202.

Usually 20 = p/2, as 95% of the data in normal distri-
bution are contained within 2 standard deviations. However
from (10), the squared difference of RVs, i.e., (X> —X1)2
is desired, which for normal RVs is given as a non-central
chi-squared RV. Limiting this distribution to one degree of
freedom will provide the distribution of the squared normal
RV, T = 02, given as

1 t+u?
= (5
2V27 A% 242
2 2
net net
X | exp AT +exp | — || > 0.
(12)
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Similarly, for the y-component, let P = Y, — Y; and its
probability density function (PDF) is given as

1
E(B—f-p), if —-B<p<0,

_ 1
@) =15 (B-p). if0<p<B. (13)
0, otherwise.
The distribution of L = P2 is then given as [19]
1 1
— L if0o<Il<B?
fih=1BJI # (14)

0, otherwise.

The distribution of the squared Euclidean distance is thus
equal to the distribution of the sum of RVs T and L, having
distributions given in (12) and (14), respectively. However,
this addition of RVs is not straight forward, owing to the
non linear terms in (14). Hence the distribution of RV L is
approximated with another distribution, complying with the
features of L as shown in the following Lemma.

Lemma 1: The distribution of the square of the differ-
ence between two uniform RVs can be approximated by
a central chi-squared distribution with standard deviation,
v = 0.408B, given as

fo®) = e (~555) . g20. a3)
V2mulg 2v
Proof: A two step process is used to approximate the
distribution of the RV L to another distribution. In the first
step, method of moments is used to match the moments of
RV L to that of Central Chi-squared RV with one degree of
freedom. It models the squared sum of zero mean normal
RVs. Since the distribution of L involves only one parameter,
therefore, matching only the first moment is enough. The first
moment of L is calculated as

w2 32
E[L] = / Ifp(hdl = < (16)
0

where E[.] is the expected value. The expected value of
Central Chi-squared RV, G, with one degree of freedom is
calculated as

2 (1+1/2)
=2 ————,
JT
where v is the standard deviation of the zero mean normal
RV and I'(.) is the gamma function. Matching the moments

and solving the equations provides the value of v depending
upon the width, B, of the strip-shaped network, given as

v = 0.408B. (18)

E[G] a7

In the second step, the K-S test is used for goodness-of-fit.
The N = 2500 LLD. samples {£1,&>...,&v} of RV L are
observed and empirical CDF, F L, is calculated using (3). The
hypothesized CDF is that of Central Chi-squared distribution,
Fg. The critical value is found to be ¢ = 0.0326 against the
level of significance @ = 0.01. The null hypothesis is

Hy: Fp =Fg. (19)
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The two values of the K-S statistics, ﬁf, calculated using (5)
are

Dy = 0.0288 for B =5,

Dy = 0.0238 for B = 10. (20)

It can be noticed that bf < ¢ for both values and Hy cannot be
rejected. Hence the new distribution for RV L approximated
with RV G is given in (15). [ |

The squared Euclidean distance now becomes the sum of
a non-central chi-squared RV from (12) and a central chi-
squared RV from (15), for which we define Z = T + G.
Note that T and G are independent RVs and the distribution
of their sum is given as [20]

1 2+ 2\ =T (1/241)
20 = 5550 <_ 2A2 )Z i (1/2)

X(ﬁ(UZQAZ)) ,i<~/fzﬂ), 220, @1

J73Y)

where I'(.) denotes the gamma function and /;(.) is the mod-
ified Bessel function of the first kind.

The distribution of the received power, using the dis-
tance distribution derived above, becomes prohibitive as (21)
involves infinite summation terms. Therefore, to analytically
derive an expression for the PDF of the received power, we
need to approximate (21) with some tractable expression.
Using the moments matching method, we approximate the
squared distance distribution to another function with similar
properties and complying with the effects of the parameters
i, A and v of RV Z, as shown in the following Lemma.

Lemma 2: The distribution of the Euclidean distance
raised to power o between a pair of nodes in two adjacent
levels as shown in Fig. 4, can be approximated by a Weibull
distribution with shape parameter, ¢, and scale parameter, X,
such that

fol@) = %cf’l exp [— (%) ] ., 920, (22)

where x = (%2, ¢ = 2k/a and the values of ¢ and k are
given in (26.)

Proof: A similar two step process as used in Lemma 1,
is used to approximate the squared distance distribution, Z.
Firstly method of moments is applied to match the moments
of RV Z to moments of Weibull RV, W. Weibull distribution
is based on two parameter, i.e., shape parameter, k, and scale
parameter, ¢. The first moment of Z is calculated as

o0
EBF=/ #2()dz = p* + A% + 02 (23)
0
and the second moment is
o0
E[Z*] = / Pf7(2)dz
0

— 1t £ 3A% 4 30* 424202 4242 <v2 n 3A2) .
(24)
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The first two moments of Weibull RV, W, are
1
E[W]=¢T (1 + z) ,
2 2 2
E[W-] =¢°T 1+z . (25)

Proceeding with the algorithm of moments matching, we get
two non-linear equations. Simplifying the equations we get

_M2+A2+U2
rd+1/k) "’
AP A% +2A2 + 2072
T e
(1? + A2 +02)

T (1+2/k)
[T (14 1/k)]

The value ¢ is dependent upon the value of k, whereas the
value of k is calculated numerically. The new distribution of
the squared Euclidean distance is given as

k
fww) = ;—kwk*] exp |:— <2—V> :| , w>0. 27

In the second step, the K-S test is used to show that
the Weibull distribution closely matches the squared dis-
tance distribution, Z. The empirical CDF, F 7, of the sam-
ples {&1, &, ..., &v} of the squared distance is calculated
using (3). The critical value, ¢, for level of significance,
a = 0.01, and N = 2500 samples is found to be 0.0326.
The hypothesized CDF is of Weibull distribution, Fy, and
the null hypothesis is

H()IFZsz. (28)

The K-S test is conducted for two set of parameters, i.e.,
(B=5u=5A=283}and{B=3,u=4,A = 1.41}
and K-S statistics, bf, is calculated using (5) for each set,
given as

D =0.0256for B=5,u =5, A =2.83,
Df =0.0212forB=3, u=4,A=141.  (29)

Ho cannot be rejected as Dy < ¢ for each set. Hence Weibull
distribution closely matches the squared distance distribution
and can be used to approximate the squared distance distri-
bution.

In (7), distance is raised to path loss exponent, o, so the
distribution of the distance raised to power, «, where d* € Q
and Q = we/2, given as

2 2 2
folg) = ;qufw(qﬁ). (30)

Hence the distribution of the Euclidean distance raised to
power, «, for the network shown in Fig. 4, is also Weibull
given in (22). |
This distance distribution is used to find the received power
distribution in a virtual MISO case in the following section.
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IV. MISO NETWORK

The received power for the virtual MISO network as shown
in Fig. 3, is the sum of ratio of an exponential RV, H, and a
Weibull RV, Q, where the sum is dependent upon the number
of the DF nodes in the previous level which are distributed
according to a PPP. As in (7), the received power is given as

Pym+1)=P Y Q'ﬁPt > R (D
icp(Sm) =" i€h(Sm)

where ¢(S,,) is the number of the DF nodes in level m.
To study such networks, the PDF of the received power needs
to be determine by self-convolving the distribution of RVs
R; as they are independent and identically distributed (1.I.D).
The PDF of a single RV, R, is given as [21]

1
fR(r>—xZ T e 6

We consider the following theorem for finding the coverage
probability of a virtual MISO link.

Theorem 1 (Coverage Probability of a Virtual MISO Link):

Ifnodes in each level are distributed according to a PPP with
mean y = 3:|S | and the mean of the DF nodes in the previous
level nis y = A|S|, then the coverage probability, P;, for a
random node in the next level n + 1 is given by

o 70" o o
m=0 " a1=0a,=0

e (r/P;)1+arttantm

amzzo(a1+a2+...+am+m)!
m

1 i .
x [Ir— 00| 69

i=1
Proof: The self-convolution of the distribution of the
ratio RVs, R, is reduced to their product in frequency domain,
given as

kn
el o] =[[Ro = FeF. 6
z=1

where * denotes the convolution operator, £ is the Laplace
operator and F(s) is the Laplace transform of fz(r), given as

[e.¢]

1 _14c+ 1
F@ =x ) w1 g (39)

n=0

The value of RV, k,, in (34) depends upon the number of
nodes in the previous level. We calculate the expected value
of (F(s)y* with respect to the Poisson RV, k,, with mean
y = A|S| as

Gs) = E[(Fe)" ]

00 K
Z (AIST) eXp( AIS1) Fe)o.  (36)

k=0
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After some mathematical manipulation, we obtain

1 l4c+ 1
Gs) = exp <A|SIXZ;F( - ”)(—x)"sm)

n=0
x exp (—A|S|). 37

The above function is quite complex and direct inverse
Laplace transform is prohibited in closed-form, so we expand
the first exponential function in (37) with a Taylor series such
that

oo 1 m
G(S)=Z<MSIXZ e G )

m=0 n=0
X exp (—AlS]). (38)

Simplifying the above function for m, we get

o0 o0 o0
AS )" 1
G(s) = Z ! Z Z SA Tt A tm

m=0 T a;=0 am=0

m

+cta,
x [Ir—= x)“’} exp (—AISI).

i=1
(39)

The PDF of the receive power, P,, is found by tak-
ing the inverse Laplace transform of the G(s), given
as

fo,on) = exp (s | 3 PET 57 5m 5

m=0 ’ a1=0 a=0 am=0
(P )a1 +ax+...+ap+m—1
r

X
(ar+ary+...+a, +m—1)!

<[r (H#) (—x)“"] . (40)

i=1

The integration of the above expression will yield the CDF,
Fp,(pr), of the received power and outage probability, P,,, is
obtained by evaluating the CDF at Fp, (t/P;). The coverage
probability given in (33) is calculated as

Py=PP,>1)=1-PP, <1)=1-P, (41

|
The coverage probability is inversely proportional to y,
which specifies the distance distribution and directly propor-
tional to the node intensity. The coverage probability, Ps, is
same for each node of any one level. The one-hop success
probability, P,y,., is calculated using the coverage probability,
given as

Pone =Pky >1)=1—-P(k, =0) =1 —exp(—A|S|Ps).
(42)

The CR and m-hop success probability of the network,
while maintaining a QoS, 7, is calculated using the coverage

probability, Py, which is unique for different set of the net-
work parameters (P, y, T, etc.). If the average number of the
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DF nodes in the first level after transmission is y Py, and the
average number of the DF nodes at level m is y P, then the
m-hop success probability is calculated as

Pk, > 1) = 1 —exp (—y P}"). (43)

The QoS, 71, which is the desired m-hop success probabil-
ity, acts as an upper bound on m-hop success probability
to calculate the number of the hops which the signal tra-
verses, i.e., P(k, > 1) > 7. The maximum hop count is
calculated by comparing m-hop success probability with 7,
given as

m < In[=In (1 =n)/AISDI

44
In Py “4)

The average value of CR can then be calculated as
CR = mpu. 45)

V. THINNING OF POISSON PROCESS TO ACHIEVE
ENERGY EFFICIENCY

The energy efficiency of the system can be improved by
limiting the number of nodes per level that relay the infor-
mation. Usually for a network with a high node density, the
transmissions from all the DF nodes of one level are not
required for the formation of the next level. Similar results can
be achieved by having a limited node participation at different
hops. The nodes present near the source or the boundary of
previous level have much higher received powers owing to
less average path loss and when they transmit to the next
level nodes, their transmissions have little or no effect on
the decoding of the nodes of next level because of large
path loss between them and the next level nodes. Limiting
such nodes from transmission to the next level and allowing
only those nodes which are nearer to the next level boundary,
conserves a significant amount of energy. A threshold based
criteria is used to limit such nodes, i.e., only those nodes
are allowed to transmit whose SNR margin is greater than
decoding threshold and less than an upper bound threshold.
Hence in this section, we devise a method to improve the
energy efficiency of the network by having limited node
participation.

_ AAA _ A o Level 1
o oo A A & Nodes

NN

N N

Futile Effective
Transmitters  Transmitters

FIGURE 5. Two subsets of transmitters in the ad hoc network.

The nodes in one level are divided into two subsets of trans-
mitters based on the above criteria, i.e., effective transmitters
and futile transmitters as shown in Fig. 5. The two subsets
of the transmitters do not need to be of equal sizes. Their
sizes can vary, however, increasing the number of nodes in
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one subset decreases the number of nodes in the other and
vice versa. The size of two subsets can be made dependent
upon the quality of service (QoS), 1, and other network
parameters. The QoS in this case can be defined as the mini-
mum end-to-end success probability required for the network.
We devise the thinning of OLA (Th-OLA) algorithm, which
is derived from the basic OLA with additional constraint for
transmission that the nodes must be closer to the boundary
of the next level. This type of situation can be attributed to a
larger rectangular area, where nodes are distributed according
to a PPP, but for transmission purpose, only the nodes of
a smaller rectangular area are selected as shown in Fig. 6.
We consider the following the theorem for the thinning
of PPP.

S| ID|

r
.
.

Effective
Transmitters

Futile
Transmitters

FIGURE 6. Depiction of the process of Thinning of PPP.

Theorem 2: If nodes are distributed according to a PPP,
¢, with intensity ) in an area |S| and the thinning function
permits only j nodes located in the area |D|, where |D| C
|S| almost surely, then the distribution of the nodes in area
\D| still follows another PPP, ¢, with same intensity A, such
that

P(p(D) =)) = eXp(—kIDI)(KL?W- (46)

Proof- Let ¢(S) be the PPP with mean A|S| and ¢(D) be

the process obtained after thinning. The distribution of ¢(D)
can be calculated as

P(GD) =j) = Y _P($(S) = k)PGD) = jl(S) = kn),

kn =j
(47)

where k, is the number of the nodes in the original PPP
and j denotes the number of nodes in the new PPP obtained
after thinning. Since the nodes are distributed uniformly, we
calculate the conditional probability of finding a node in ¢(D)
given that ¢(S) =1 as

- D
P@D) =11¢p(S)=1) = H (48)
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The conditional probability of q_b(D) = j given that ¢(S) = k,
is given as

P@D) = j1$(S) = ky) = (k> (@)j (1 - @)kﬂ
N =EI=AG ) s s1)
(49)
Using the above expression in (47), we get

N
k!

P(¢(D) =j) = ) _ exp(—AIS])

kn=j

()-8

(DY
J!
> [AIS1(1 = 117D
(s — )

= exp (—AlS])

(50)
kn:j

After some mathematical manipulations, we obtain

(MDY
;!

X exp [)\|S| (1 _ |S|*‘|D|)]
- (Mj—?wexp (—AID)). (51)

P($(D) = j) = exp (—AIS|)

Hence the thinning process directly reduces the effective hop
area, whereas the intensity of the nodes remains the same with
same distribution. ]

The distance between the nodes of two consecutive hops
is modeled with (22) with reduced mean, [, and reduced
standard deviation, A, as the effective transmit area of a hop
reduces, however, Theorem 1 can be used to analyze the
Th-OLA. The value of [i is always less than p as the effective
hop area cannot be greater than the original one.

Let the number of the nodes that relay the signal at level i
is k, ; in basic OLA and the number of the nodes that relay
the signal after thinning process is j;. Then the total transmit
power for basic OLA in transmitting the signal up to m hops
while maintaining a QoS is P, Zf"zo kn,i, which is dependent
upon the RV k, and the ergodic mean of the total energy
consumed is P;myj, where y}, is the average number of nodes
per hop for basic OLA. Similarly, the total transmit energy for
thinned OLA is P; Z;":O Ji and its mean value is P;my;, where
y; is the average number of nodes per hop for Th-OLA. The
fraction of energy saved (FES) can be calculated as

Total energy of the Th-OLA

FES =1— -
Total energy of the basic OLA
P
FES =1 "1
Pymyy
1= (52)
Vb
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FIGURE 7. Membership probability in three adjacent levels for B = 8,
T = 0.04, o=2.

VI. RESULTS AND DISCUSSION

In this section, we validate our analytical models that charac-
terize the performance of a virtual MISO network in terms of
the coverage probability, one-hop success probability, cov-
erage range and the energy efficiency of the network. We
calculate the membership probability of the three subsequent
levels for a network of length 200, width 8 and intensity
0.1125 as shown in Fig. 7 by repeating the process for le5
iterations. It can be observed that the node membership fol-
lows a Gaussian distribution and the membership probability
for the three adjacent levels are almost similar with similar
mean and standard deviation. This behavior links to the quasi-
stationary phenomenon, which informs that a steady-state is
reached when a wave (of transmission) traverses the entire
network [10].

We now compare the distribution of the squared Euclidean
distance derived from computer simulations with the Weibull
distribution derived in Section III. For the sake of computer
simulations, two nodes are positioned randomly in adjacent
levels and x coordinates of node 1 and node 2 are generated
according to Gaussian distributions N(vi, o) and N (v, o),
respectively, where 4 = v, — vy. The parameter © spec-
ifies the hop distance and y coordinates of both nodes are
generated according to a uniform distribution, i.e., U(0, B).
The squared Euclidean distance is calculated between these
two nodes and the process is repeated over le6 iterations
to calculate the resulting PDF. It can be seen from Fig. 8
that the analytical results for different values of the hop
distance, p, closely match the simulation results. Hence, the
Weibull distribution in (27) provides a good approximation
for the squared Euclidean distance. Note that a large value
of u specifies that the two levels are farther apart from each
other. Hence the values of the PDF on the ordinate become
smaller.

Fig. 9 validates the findings of Theorem 1 by comparing
it to that of simulations. For simulation purpose, a random
number of nodes is generated using a Poisson RV in one level
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FIGURE 8. Comparison of the simulation distance distribution with the
Weibull distribution forB=4, A =2 and « = 2.
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FIGURE 9. Comparison of the coverage probability of a node for MISO
using analytical and simulation model for B = 4.69, p = 1.17, A = 1.45,
Pl’ =landa =2.

and the received power at a node in the next level is calculated
using (7) and compared with a decoding threshold, . The
coverage probability at a node is calculated by repeating the
process over le5 iterations. The results are calculated for vari-
ous values of T and different average number of nodes, y. The
analytical model of the coverage probability requires infinite
summation terms, however, two decimal point accuracy can
be achieved with initial six terms. It can be noticed that the
analytical model provides a close fit to the simulation model.
Also we can infer the relationship between coverage probabil-
ity of a node and the decoding threshold. Coverage decreases
as we increase the threshold or decrease the number of nodes
per hop. For instance, it can be seen that at T = 0.04, the
coverage probability increases by 5.5% when y is increased
from 3 to 4. Whereas the increase in coverage probability is
2.1% when y is increased from 4 to 5. Hence a diminishing
trend can be observed.
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FIGURE 10. Effect of the average number of nodes on one-hop success
probability with « =2, p =2.62, A =2.12 and B = 7.87.

In Fig. 10, the one-hop success probability of the random
network with different average number of nodes is plotted
against the SNR margin, ¥ = P;/t. It can be observed that
the one-hop success probability increases with the increasing
node densities for a fixed SNR margin and it also increases
as the SNR margin is increased for a fixed node density.
It can be seen that the one-hop success probability curves
seem to approach a limiting value with the increased SNR
margin. This asymptotic limit trace back to the theory of PPP,
as the number of nodes at level m can be zero with probability
exp (—yPT), which amounts to a hop failure. These failures
can be reduced by increasing the node intensities and/or hop
area, which in turn reduces the void probability. Hence the
node intensities play a vital role in achieving a certain one-
hop success probability as compared to SNR margin.

TABLE 2. Coverage range.

QoS Case 1 Case 2
n Analytical Simulations Analytical Simulations

0.8 5.93 5.95 5.51 5.64

0.7 9.35 8.7 8.221 7.95

0.6 12.57 11 10.77 10.30
0.5 15.87 14.5 13.37 13.19
0.4 19.48 18.2 16.21 16.36
0.2 29.26 28.9 23.93 24.9

Table 2, validates our stochastic model by comparing the
coverage range (CR) of a pure OLA network to that of the
proposed analytical model. For pure OLA network, Monte-
Carlo simulations are used. A strip-shaped network with
random node locations is considered such that a source node
is placed at the start of the network and it broadcasts the signal
using OLA protocol discussed earlier. Once steady-state is
reached, i.e., after reaching a particular hop, the hop distance,
1, between any two hops and average number of nodes, y,
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FIGURE 11. Coverage range for different values of transmit power, P;,
and average number of nodes, y with x = 4.05, A = 1.27, B =9.75,
n=0.8and r =0.2.

per hop remain almost same. This process is repeated 1e4
times and the CR is calculated for different values of the
QoS after steady-state is reached. The following two cases
are considered and findings of the simulation are compared
with the analytical model:-

Casel:pu =393,y =266,7=008,P, =1, W=4
Case2:pu =286,y =291, 71 =0.16, P, =1, W = 4.69

The analytical results obtained by using Theorem 1 and
plugging values in (45) closely match the simulation results.
Hence the proposed model can be seen effective in modeling
a pure OLA network.

A contour plot of CR against the transmit power, P;, and
the average number of the nodes, y, is shown in Fig. 11, for
n = 0.8 and T = 0.2. It is observed that the same value of CR
can be attained for different set of values of P; and y and a
network designer can choose any set of parameters depending
upon the network constraints and requirements. For instance,
it can be seen that at y = 8, the CR is increased by 278%
when P; is increased from 3 to 7. Whereas, the CR increases
by 134% with y = 4 for the same increase in transmit power.

We now focus on the results of the energy efficiency for
OLA network. Fig. 12 shows the FES computed for different
values of the CR while maintaining a QoS. For calculating
the success probability of the Th-OLA, [ is used, however,
CR is calculated using @ as hop length does not change.
It can be seen that the FES decreases with the increasing CR
for a particular y but still a significant amount of energy can
be conserved by using the proposed Th-OLA algorithm and
network life can be extended. Since the effective diversity
gain of the Th-OLA is less as compared to the basic OLA
because of limited node participation, the CR of the Th-OLA
is also small as compared to the basic OLA, however, to a
particular CR, Th-OLA provides an energy efficient approach
to achieve that CR. For instance, to achieve a CR of 375, Th-
OLA with u = 5 and y = 14 requires 50% less energy
as compared to the basic OLA with 4 = Sand y = 14
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FIGURE 12. FES for three different values of y with . =5, y = 14dB,
B=6,7=0.8,and A = 2.

while maintaining the same QoS of 0.8. Hence Th-OLA is
successful in saving the energy and extending the life time of
the energy constraint networks.

TABLE 3. Effect of hop distance on FES.

- CR Energy of Th-OLA (dB) FES
w=>5 nw=2_
10 120 21.2 20.3 0.1898
200 24 23.2 0.1817
14 120 21 19.9 0.2085
200 23.8 22.8 0.2043

Hop distance is an important factor in characterizing the
energy requirements to achieve a particular CR. OLAs with
different hop distances require different number of the hops
to achieve the same CR. Similarly, Th-OLAs with different
hop distances require different number of the hops to achieve
the same CR, so the FES for the comparison of two Th-OLAs
with different hop distances, i.e., ;1 and 7, is calculated with
the modified version of (52), given as

—1_ mJ/tl’ (53)

Pinyp nyr2

P
FES — | — 1Myt

where m and n are the number of hops required to achieve a
particular CR with two different TH-OLAs of (y;1, ©1) and
(vr2, 12), respectively. The Th-OLA with larger hop distance,
= 8, is compared to the Th-OLA with smaller hop distance,
= 5 and results are summarized in Table 3. These result
are calculated for SNR margin, v = 14dB, with network
width, B = 6, n = 0.8 and A = 2. OLA with smaller hop
distance can achieve a higher CR as compare to larger hop
distance as increase in the hop distance increases the path loss
attenuation. However, the network with larger hop distance,
1, provides more energy efficient approach in achieving a
particular CR for a fixed y and thus saves a considerable
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FIGURE 13. Comparison of the Th-OLA with the independent thinning
process fory = 14dB,y =8, 1